Strabon: Semantic Support for EO Data Access in TELEIOS

2nd Community Workshop
Darmstadt, 11 May 2012

Presenter: Kostis Kyzirakos (NKUA)
Outline

• The Fire Monitoring Service of NOA
• stRDF/stSPARQL and Strabon
• Examples of data and queries in the Fire Monitoring Service
• Examples of data and queries in the Virtual EO for TerraSAR-X Data
• Conclusions
The Fire Monitoring Service

Eumetsat @ 9.5° East

Back End: MonetDB / Strabon
- Corine Landcover
- Admin Boundaries
- POIs

Geospatial Ontology

Linked Geospatial Data Semantic technologies

Cataloguing Service & Metadata Creation

Processing Chain (SciQL based)

Data Vault

HotSpots

External Sources

Raw Data

Front End: GUI

Map Element

Web access based on Semantics

05/11/12
Requirements of the Fire Monitoring Service

- Need for modeling of
 - Geospatial information
 - Temporal information
 - Product metadata
 - Product content
- Need to link to other data sources
 - GIS data
 - Other information on the Web
The Data Model stRDF

- stRDF extends RDF with:
 - **Spatial literals** encoded in Well-Known Text/GML (OGC standards)
 - New Datatype for spatial literals (**strdf:geometry**)
 - **Valid time of triples** encoded by Boolean combinations of temporal constraints (ignored for the time being)
stRDF: An example
ex:BurntArea1 rdf:type noa:BurntArea.
ex:BurntArea1 noa:hasID "1"^^xsd:decimal.
ex:BurntArea1 noa:hasArea "23.7636"^^xsd:double.

ex:BurntArea1 strdf:geometry "POLYGON((38.16 23.7, 38.18 23.7,
38.18 23.8, 38.16 23.8, 38.16 23.7));
ex:BurntArea1 rdf:type noa:BurntArea.
ex:BurntArea1 noa:hasID "1"^^xsd:decimal.
ex:BurntArea1 noa:hasArea "23.7636"^^xsd:double.

ex:BurntArea1 strdf:geometry "<gml:Polygon
srsName='http://www.opengis.net/def/crs/EPSG/0/4121'>
<gml:outerBoundaryIs><gml:LinearRing><gml:coordinates>38.16,23.70
38.18,23.70 38.18,23.80 38.16,23.80

Spatial Data Type
Well-Known Text
Spatial Literal
Find all burnt forests close to a city

```
SELECT ?BA ?BAGEO
WHERE {
  ?R rdf:type noa:Region ;
    strdf:geometry ?R GEO ;
    noa:hasCorineLandCoverUse ?F .
  ?CITY rdf:type dbpedia:City ;
    strdf:geometry ?CGEO .
  ?BA rdf:type noa:BurntArea ;
    strdf:geometry ?BAGEO .
  FILTER (strdf:Intersect(?R GEO, ?BAGEO) &&
   strdf:distance(?BAGEO, ?CGEO) < 0.02) }
```
We define a SPARQL extension function for each function defined in the OpenGIS Simple Features Access standard.

- **Basic functions**
 - Get a property of a geometry (e.g., strdf:srid)
 - Get the desired representation of a geometry (e.g., strdf:AsText)
 - Test whether a certain condition holds (e.g., strdf:IsEmpty, strdf:IsSimple)

- **Functions for testing topological spatial relationships** (e.g., strdf:equals, strdf:intersects)

- **Spatial analysis functions**
 - Construct new geometric objects from existing geometric objects (e.g., strdf:buffer, strdf:intersection, strdf:convexHull)
 - Spatial metric functions (e.g., strdf:distance, strdf:area)

- **We define spatial aggregate functions** (e.g., strdf:union, strdf:extent)
stSPARQL and OGC standards

• **Spatial terms**
 - Constants (e.g., "POLYGON((38.16 23.7, ...)) " ^^strdf:WKT)
 - Variables (e.g., ?GEO)
 - Results of set operations (e.g., strdf:intersection, strdf:union)
 - Results of geometric operations (e.g., strdf:boundary, strdf:buffer)

• **Select clause**
 - Construction of new geometries (e.g., strdf:buffer(?geo, 0.1))
 - Spatial aggregate functions (e.g., strdf:extent(?geo))
 - Metric functions (e.g., strdf:area(?geo))

• **Filter clause**
 - Functions for testing topological spatial relationships between spatial terms (e.g., strdf:contains(?G1, strdf:union(?G2, ?G3)))
 - Numeric expressions involving spatial metric functions (e.g., strdf:area(?G1)<=2*strdf:area(?G2)+1)
 - Boolean combinations

• **Having clause**
 - Boolean expressions involving spatial aggregate functions and spatial metric functions or functions testing for topological relationships between spatial terms (e.g., strdf:area(strdf:union(?geo))>1)

• **Updates**

Similar to the OGC standard GeoSPARQL

05/11/12
Strabon: A Scalable Geospatial RDF Store

stRDF graphs

stSPARQL/GeoSPARQL queries

Query Engine
- Parser
- Optimizer
- Evaluator
- Transaction Manager

Storage Manager
- Repository
- SAIL
- RDBMS

GeneralDB

PostGIS

05/11/12
Linked Data used in Fire Monitoring

- Hotspots detected by the National Observatory of Athens (NOA) using MSG-SEVIRI acquisitions
- Hotspots detected by the Fire Information for Resource Management System (FIRMS) using TERRA/AQUA-MODIS acquisitions
- Administrative Regions of Greece
- Corine Land Use / Land Cover Nomenclature
- LinkedGeoData
- GeoNames
Linked Open Data (1/5)

- Hotspots
Linked Open Data (2/5)

- Greek Administrative Geography
• Corine Land Use / Land Cover
Linked Open Data (4/5)

- LinkedGeoData
Linked Open Data (5/5)

- Geonames
Discovering raw data and products

- Retrieve shapefiles that contain acquisitions taken between 20:00 and 20:30 of August 21, 2010 and performed by sensor MSG2

SELECT ?filename
WHERE {
 ?file noa:hasFilename ?filename .
 ?file noa:hasAcquisitionTime ?sensingTime .
 FILTER(str(?sensingTime) >= "2007-08-26T12:00:00") .
 FILTER(str(?sensingTime) <= "2007-08-26T12:30:00") .
 ?file noa:isDerivedFromSensor ?sensor .
 FILTER(str(?sensor) = "MSG2") .
 FILTER(str(?chain) = "StaticThresholds") .
}
Retrieve shapefiles that contain acquisitions taken between 20:00 and 20:30 of August 21, 2010 and performed by sensor MSG1_RSS

<table>
<thead>
<tr>
<th>?filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSG2_07-08-26_12:00_StaticThresholds.shp</td>
</tr>
<tr>
<td>MSG2_07-08-26_12:15_StaticThresholds.shp</td>
</tr>
<tr>
<td>MSG2_07-08-26_12:30_StaticThresholds.shp</td>
</tr>
</tbody>
</table>
• Get all hotspots detected in Peloponnesus at 24/08/2007.

WHERE { ?h rdf:type noa:Hotspot; noa:hasGeometry ?hGeo; noa:hasAcquisitionTime ?hAcqTime; noa:hasConfidence ?hConfidence; noa:isProducedBy ?hProvider; noa:hasConfirmation ?hConfirmation; noa:isDerivedFromSensor ?hSensor; noa:isDerivedFromSatellite ?hSatellite; noa:producedFromProcessingChain ?hChain . FILTER(str(?hChain) = "StaticThresholds").
FILTER(?hAcqTime = "2007-08-24T14:45:00"^^xsd:dateTime). FILTER(strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05, 21.027 36.05, 21.027 38.36))"^^ strdf:WKT, ?hGeo)).

05/11/12
Improve product accuracy

- Delete part of the polygons that lie in sea.
• Get all coniferous forests in Peloponnese

```turtle
SELECT ?a ?aGeo
WHERE{
  ?a rdf:type clc:Area;
  clc:hasLandUse ?aLandUse;
  noa:hasGeometry ?aGeo.
  ?aLandUse rdf:type ?aLandUseType.
  FILTER(?aLandUseType = clc:ConiferousForest).
  FILTER(strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05, 21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?aGeo)).
}
```
Creating a map (3/4)

- Get all municipalities of Peloponnese

```c
SELECT ?d ?dGeo
WHERE {
  ?d rdf:type gag:Dhmos;
  FILTER(strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,
  21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?dGeo)).
}
```

05/11/12
• Get all primary roads in Pelloponnese

```sql
SELECT ?r ?rGeo
WHERE{?r  a ?rType ;
    noa:hasGeometry ?rGeo .FILTER(?rType = lgdo:Primary) .FILTER(strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05, 21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?rGeo) ).
```
Final map
Final map
Get roads that are threatened by fires of 2011 according to effis.

```
SELECT ?r (strdf:intersection(?rGeo, strdf:buffer(?hGeo, 0.0114)) AS ?rSegment)
WHERE {
  ?h a noa:Hotspot;
  noa:hasGeometry ?hGeo;
  noa:hasAcquisitionTime ?hAcqTime;
  noa:isProducedBy ?hProvider.
  FILTER (str(?hAcqTime) > "2011-08-01:00:00:00" && str(?hAcqTime) < "2011-11-31:23:59:00").
  FILTER ( ?hProvider = noa:effis ).
  ?r a lgdo:Residential;
  noa:hasGeometry ?rGeo.
  FILTER (strdf:anyInteract(?rGeo, strdf:buffer(?hGeo, 0.0114))).
}
```
More complex examples (2/2)

Get all hospitals that may be threatened from fires in the summer of 2007 according to the FIRMS/MODIS hotspots.

```
SELECT DISTINCT ?nGeo ?nLabel
WHERE { ?d a gag:Dhmos;
?h a noa:Hotspot;
  noa:hasGeometry ?hGeo; noa:hasAcquisitionTime ?hAcqTime;
  noa:isProducedBy ?hProvider.
?n a lgdo:Hospital;
  geo:geometry ?nGeo;
  rdfs:label ?nLabel.
FILTER( strdf:anyInteract(?nGeo, strdf:buffer(?hGeo, 0.025)))
}
```

05/11/12
The Virtual Observatory for TerraSAR-X Data

• Develop a VO that goes **beyond the current EOWEB portal of DLR** to allow queries that take into account image annotations capturing the knowledge available in the images and related GIS data.

• Develop **rapid mapping applications** on top of the VO:
 - Flood monitoring and support
 - Evaluating infrastructure damages after earthquakes
 - Evaluating tsunami effects

• Other rapid mapping applications may be studied if they can increase the visibility of TELEIOS.
Feature Extraction Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Input parameter</th>
<th>Number of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLCM: Grey-Level Co-occurrence Matrix</td>
<td>Orientation (1 - 4)</td>
<td>48</td>
</tr>
<tr>
<td>NSFT: Nonlinear Short Time Fourier T</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>GAFS: Gabor Filters</td>
<td>scaleGaussian (2 or 4) Orientation (2 or 6)</td>
<td>8 (2 and 2) 48 (4 and 6)</td>
</tr>
<tr>
<td>QMFS: Quadrature Mirror Filters</td>
<td>nNbLevels (1 or 2)</td>
<td>8 (1) 14 (2)</td>
</tr>
<tr>
<td>LWZ: Dictionary based compression</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Semantic Annotation

Forest
- Forest mixed

Water

Urban built-up
- Industrial
- Port
- Residential area

Transportation
- Bridge
- Sea
- Channel
- Train lines
RDF Encoding

dlr:Product_1 rdf:type dlr:Product ;
dlr:hasImage dlr:Image_1.tif ;
dlr:hasName "TSX1_SAR"^^xsd:string ;
dlr:hasXMLfilename "TSX1_SAR.xml"^^xsd:string .

dlr:Image_1.tif rdf:type dlr:Image ;
dlr:hasName "IMAGE_HH_SRA_spot_047.tif"^^xsd:string ;
dlr:consistsOf dlr:Patch_1.jpg ;
dlr:hasGeometry "POLYGON((12 45,13 45,13 46,12 46,
12 45))"^^strdf:WKT .

dlr:Patch_1.jpg rdf:type dlr:Patch ;
dlr:hasName "Patch_200_0_0.jpg"^^xsd:string ;
dlr:hasSize "200"^^xsd:int ;
dlr:hasIndexI "0"^^xsd:int ;
dlr:hasIndexJ "0"^^xsd:int ;
dlr:hasGeometry "POLYGON (12 44, 13 44, 13 45, 12 45,
12 44))"^^strdf:WKT ;
dlr:hasGAFS_vector dlr:GAFS_2_2_1 ;
dlr:hasLabel dlr:Label_1 .

dlr:Label_1 rdf:type dlr:Label ;
dlr:correspondsTo dlr:Bridge .

dlr:GAFS_2_2_1 rdf:type dlr:GAFS_Vector ;
dlr:hasFeatureVectorValues dlr:GAFS_2_2_1_values .
Find all the patches containing water limited in the north of a port, at a distance of no more than 200 meters.

```
SELECT ?p1 ?g1
WHERE { ?p1 rdf:type dlr:Patch ;
                dlr:hasGeometry ?g1 ;
                dlr:hasLabel ?l1 .
                ?l1 rdf:type dlr:Label ;
                dlr:correspondsTo dlr:Water .

            ?p2 rdf:type dlr:Patch ;
                dlr:hasGeometry ?g2 ;
                dlr:hasLabel ?l2 .
                ?l2 dlr:correspondsTo dlr:Port ;
                rdf:type dlr:Label .

            FILTER(strdf:above(?g1,?g2)) .
            FILTER(strdf:contains(strdf:buffer(?g2,0.005),?g1))}
```

Querying on semantic and spatial information

05/11/12
Querying on semantic information and feature values

- Find all patches that correspond to a bridge, according to the 1st feature value of the Gabor algorithm with 4 scales and 6 orientations.
The Framework RDFi

- Extension of RDF with **incomplete information**
- New kind of literals (**e-literals**) for each datatype
 - Property values that *exist* but are *unknown* or *partially known*
- **Partial knowledge**: captured by constraints (appropriate constraint language \(L \))
- RDF graphs **extended** to RDFi databases: pair \((G, \varphi)\)
 - \(G\): RDF graph with e-literals
 - \(\varphi\): quantifier-free formula of \(L \)
- Formal semantics for RDFi and SPARQL query evaluation
- **Representation System**: CONSTRUCT with AUF graph patterns
- **Certain Answer**: semantics, algorithms, computational complexity when \(L \) is a language of spatial topological constraints
- Implementation in the context of Strabon has started with \(L \) being PCL (topological constraints between variables and polygon constants)
hotspot1 type Hotspot.
fire1 type Fire.
hotspot1 correspondsTo fire1.
fire1 occurredIn _R1.
_R1 TPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"
RDFi Database: An example

hotspot1 type Hotspot .
fire1 type Fire .
hotspot1 correspondsTo fire1 .
fire1 occurredIn _R1 .
_R1 NTPP "x\geq 6 \land x\leq 23 \land y\geq 8 \land y\leq 19"
hotspot1 type Hotspot .
fire1 type Fire .
hotspot1 correspondsTo fire1 .
fire1 occurredIn _R1 .
_R1 NTPP "x≥6 ∧ x≤23 ∧ y≥8 ∧ y≤19"
Example Query

- Find all fires that are inside region Q1
Example Query

- Find all fires that are inside region Q1
• In stSPARQL this query would be expressed as

```
SELECT ?F
WHERE {
    ?F type Fire .
    ?F occurredIn ?R .

    FILTER (NTPP(?R, "x≥10 ∧ x≤21 ∧ y≥12 ∧ y≤17"))
}
```
• What is the answer to the previous query?
What is the answer to the previous query?
• What is the answer to the previous query?

• It is not certain that fire1 is inside Q1.
• What is the answer to the previous query?

• It is not certain that fire1 is inside Q1.

• The answer should be conditional.
<table>
<thead>
<tr>
<th>?F</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>fire1</td>
<td>_R1 NTPP “x≥10 ∧ x≤21 ∧ y≥12 ∧ y≤17”</td>
</tr>
</tbody>
</table>

- The answer reads as: “fire1 is in the answer only if the respective region where it occurs is inside rectangle Q1”

- Answers reminiscent of c-tables [Imielinski-Lipski84]
Example Query

• Find all fires that are certainly inside Q2
Example Query

• In stSPARQL this query would be expressed as

```
CERTAIN SELECT ?F
WHERE {
  ?F type Fire .
  ?F occurredIn ?R .
  FILTER (NTPP(?R, “x≥2 ∧ x≤28 ∧ y≥4 ∧ y≤22”))
}
```
Answer to Example Query

- What is the answer to the previous query?
Answer to Example Query

• What is the answer to the previous query?
• What is the answer to the previous query?

Now it is **certain** that fire1 is in Q2. **Why?**
• What is the answer to the previous query?

• Now it is certain that fire1 is in Q2. Why?

• Because fire1 occurs in a region inside P (qualitative) which is known (quantitative) to be inside Q2 (the geometries of P and Q2 are known).
Conclusions

- **stRDF/stSPARQL**
 - Model and query language for the representation and querying of geospatial data

- **Strabon**
 - Scalable Geospatial RDF Store

- **Linked Open Data**
 - Add value to final product
Vielen Dank!

- How about building a toy application with your spatial data?
 - Strabon
 - NOA Application Demo
 - TELEIOS EU Project
 http://www.earthobservatory.eu/